

Computer-Aided Collaborative Subway Track Planning in Multi-Scale 3D City and Building Models

Martin Breunig and Mulhim Al-Doori

Karlsruhe Institute of Technology – American University in Dubai

martin.breunig@kit.edu – maldoori@aud.edu

GEODETIC INSTITUTE, DEPARTMENT OF CIVIL ENGINEERING, GEO AND ENVIRONMENTAL SCIENCES, CHAIR IN GEOINFORMATICS

MEGF/GRASF 2016

www.kit.edu

Problem description: planning of inner-city subway track

- highly complex planning task on different levels of details
- multitude of stake holders
 - → demands collaborative planning
 → high risks (time, quality, costs)
- planning mostly 2D-based
 → conflicts are hard to detect
- insufficient incorporation of available spatial data sources and building models

2

Challenges for 3D Tracks Planning

Multi-disciplinary, cooperative work

→ Methods for synchronous collaboration

Different abstraction levels (LoD)

→ Mechanisms for ensuring consistency between different level of details

Persistent storage of complex models

 \rightarrow spatio-temporal databases

Flexible access to information with georeference

- → Advanced Geo Web Services
- Evaluation of draft planning on site
 - → Augmented Reality technologies

Overview

Dubai

The central component: Collaboration platform

distributed multi-user system with centralized data management

- development of methods for synchronous collaboration
- integration of external (also unknown) data sources during runtime

Geometric modeling during tracks planning process

- **Procedural modeling** supports the process of planning
 - **Paramatric models**
 - Conditions are describing dependencies between entities
- Example:
 - Clothoid describes the course of the tunnel
 - Sketch describes the tunnel cross-section
 - Sweep of the sketch along the clothoid results in tunnel geometry

Dubai

Construction of multi-scale models

complextime intensive

error-prone

automation reasonable and necessary

Construction operations have to be formalized with graph replacement rules

8

Graphs for sketch and procedural model

Sketch graph:

- nodes: geometric elements
- edges: parametric constraints

Procedural graph:

- describes construction operations
- Complete process of the construction operations is reproducible
 - => construction history

Managing the geometries in space and time:

Bi-temporal spatio-temporal index (3D space +2D time)

• Approach:

- Divide bounding rectangles into lower and upper boundary points
- Store both boundary points in parallel working trees
- Each sub-tree stores n-dimensional points
- Each point contains pointer to bounding rectangles
- Both trees return results to the same result set

Performance tests

 Real-world data: part of city models from Karlsruhe und Munich city repeatedly multiplied

R*-Tree new structure

5D-Hyper-rectangles

Model integration on the basis of Geo-Web-Services

- Web services for model integration (IFC standard => CityGML standard)
 - Consistency checks (e.g. overlap with existing building stock)

Triangulated tunnel geometry

Intersection with underground structures

Augmented Reality methods for in-sito visualization

- Design and implementation of multi-fisheye camera system
- Methods development for
 - Calibration of the camera system
 - Online in-sito visualization of objects
 - (Self-) Initialization / localization of the system without GPS

Outlook: Transfer to the Gulf Region

IT methods needed for infrastructure projects

- 3D modeling of natural and built environment
- 3D database to support spatial planning
- Multi-scale modeling
- Augmented reality methods